distributive lattice - definitie. Wat is distributive lattice
Diclib.com
Woordenboek ChatGPT
Voer een woord of zin in in een taal naar keuze 👆
Taal:

Vertaling en analyse van woorden door kunstmatige intelligentie ChatGPT

Op deze pagina kunt u een gedetailleerde analyse krijgen van een woord of zin, geproduceerd met behulp van de beste kunstmatige intelligentietechnologie tot nu toe:

  • hoe het woord wordt gebruikt
  • gebruiksfrequentie
  • het wordt vaker gebruikt in mondelinge of schriftelijke toespraken
  • opties voor woordvertaling
  • Gebruiksvoorbeelden (meerdere zinnen met vertaling)
  • etymologie

Wat (wie) is distributive lattice - definitie


Distributive lattice         
  • Free distributive lattices on zero, one, two, and three generators. The elements labeled "0" and "1" are the empty join and meet, and the element labeled "majority" is (''x'' ∧ ''y'') ∨ (''x'' ∧ ''z'') ∨ (''y'' ∧ ''z'') = (''x'' ∨ ''y'') ∧ (''x'' ∨ ''z'') ∧ (''y'' ∨ ''z'').
  • Distributive lattice which contains N5 (solid lines, left) and M3 (right) as sub''set'', but not as sub''lattice''
  • [[Young's lattice]]
LATTICE IN WHICH THE OPERATIONS OF JOIN AND MEET DISTRIBUTE OVER EACH OTHER
Distribute lattice; Distributive lattice/Proofs; Free distributive lattice
In mathematics, a distributive lattice is a lattice in which the operations of join and meet distribute over each other. The prototypical examples of such structures are collections of sets for which the lattice operations can be given by set union and intersection.
distributive lattice         
  • Free distributive lattices on zero, one, two, and three generators. The elements labeled "0" and "1" are the empty join and meet, and the element labeled "majority" is (''x'' ∧ ''y'') ∨ (''x'' ∧ ''z'') ∨ (''y'' ∧ ''z'') = (''x'' ∨ ''y'') ∧ (''x'' ∨ ''z'') ∧ (''y'' ∨ ''z'').
  • Distributive lattice which contains N5 (solid lines, left) and M3 (right) as sub''set'', but not as sub''lattice''
  • [[Young's lattice]]
LATTICE IN WHICH THE OPERATIONS OF JOIN AND MEET DISTRIBUTE OVER EACH OTHER
Distribute lattice; Distributive lattice/Proofs; Free distributive lattice
<theory> A lattice for which the least upper bound (lub) and greatest lower bound (glb) operators distribute over one another so that a lub (b glb c) == (a lub c) glb (a lub b) and vice versa. ("lub" and "glb" are written in LateX as sqcup and sqcap). (1998-11-09)
Duality theory for distributive lattices         
In mathematics, duality theory for distributive lattices provides three different (but closely related) representations of bounded distributive lattices via Priestley spaces, spectral spaces, and pairwise Stone spaces. This duality, which is originally also due to Marshall H.